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Abstract This paper investigates the dynamics of the
giant swing motions of an underactuated three-link
gymnastic robot moving in a vertical plane by means
of dynamic delayed feedback control (DDFC). DDFC,
being one of useful methods to overcome the so-called
odd number limitation in controlling a chaotic discrete-
time system, is extended to control a continuous-time
system such as a 3-link gymnastic robot with passive
joint. Meanwhile, a way to calculate the error trans-
fer matrix and the input matrix which are necessary
for discretization is proposed, based on a Poincaré sec-
tion which is defined to regard the target system as
a discrete-time system. Moreover, the stability of the
closed-loop system by the proposed control strategy is
discussed. Furthermore, some numerical simulations
are presented to show the effectiveness in controlling a
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1 Introduction

Underactuated mechanical systems, such as surface
vessels, underwater vehicles, helicopters, road vehi-
cles, underactuated manipulators, flexible joint and
flexible link robots, space robots, mobile robots, and
acrobat, refer to the systems possessing less num-
ber of actuators than degrees of freedom. These
systems generate interesting control problems which
require fundamental nonlinear approaches. Such sys-
tems exhibit often complex internal dynamics, non-
holonomic behavior, and lack of feedback linearizabil-
ity, which make the class a rich one from a control
standpoint.

The gymnastic robot, whose first joint is passive
and the rest are active, is classified as an underactu-
ated robot [1]. Open-loop dynamic characteristics of
such a linkage as this kind of system with nonholo-
nomic constraints, shows the chaotic nature that small
differences in initial conditions yield widely diverging
outcomes for its nonlinearity due to centrifugal force,
coriolis force, and gravity. In the past few years, the
research in this area has made great progress [2–9].
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However, a generalized control method has not yet
been established to this kind of system for the dif-
ficulties in analysis, their control problems remain
challenging.

The giant swing motions existing in the gymnastic
robot are, needless to say, a kind of periodic motion.
Meanwhile, each motion such as bipedal locomotion of
walking robot [10], swing and locomotion of brachi-
ation robot [11], can also be considered as a special
kind of periodic one which is achieved by repeating
a half-cycle movement. However, the characteristic of
the periodic motion of these underactuated systems has
not been understood clearly. As is known that the clas-
sical and the most frequently used tool for analysis of
existence and stability of periodic trajectories of non-
linear dynamical systems is the Poincaré first-return
map, which is defined on a hyper-surface transversal
to dynamics at a point of the cycle. Calculation of the
Poincaré map of a nonlinear system typically cannot
be done analytically and requires numerical solution
of the system dynamics for a large number of initial
conditions. It is often computationally expensive and
of limited use, if one look for periodic solutions which
are open-loop unstable, or if one look for design of a
stabilizing controller. This motivates investigation of
alternative strategies.

On the other hand, in 1990, Ott et al. [12] pointed
out that the existence of many unstable periodic orbits
(UPOs) embedded in chaotic attractors raises the pos-
sibility of using very small external forces to obtain
various types of regular behavior. Since then, study on
dynamics and control of chaotic phenomena in deter-
ministic nonlinear dynamical systems had attracted
increasing attention. In order to improve the perfor-
mance of the characteristics of the system or avoid the
chaotic phenomena, it is required to control a chaotic
system to a periodic motion which is beneficial for
working with a particular condition. For this purpose,
many control methods such as time delay feedback
control [13–15], robust control [16], adaptive control
[17,18], sliding mode control [19,20], fuzzy adaptive
sliding mode control [21], back-stepping design [22],
intermittent control [23,24], etc., have been proposed
to control chaos. Among them, the delayed feedback
control (DFC) has gained widespread acceptance. DFC
involves a control input formed from the difference
between the current state of the system and the state
of the system delayed by one period of the UPOso that

the control signal vanishes when the stabilization of a
periodic orbit is attained.

Nevertheless, some general analytical results have
proved that the DFC has a limitation that if the linear
variational equation about the target UPO has an odd
number of real characteristic multipliers greater than
unity, the UPO can never be stabilized with any value
of feedback gain. This statement was first proved by
Ushio [25] for discrete-time systems. Just et al. [26]
and Nakajima [27] proved the same limitation for the
continuous-time DFC. Since then, several modifica-
tions [28–38] of the original DFC method have been
proposed in order to improve its performance. How-
ever, in applying the DFC to the continuous system,
stability analysis of the closed-loop system is very
difficult since the time-delay dynamics described by
a difference-differential equation takes place in infi-
nite dimensional phase spaces. In order to overcome
this difficulty, the authors have proposed some con-
trol strategies such as prediction-based delayed feed-
back control (PDFC) [39], multiple-prediction delayed
feedback control (MPDFC) [40,41], for stabilizing the
unstable periodic orbits embedded in the giant swing
motions of the gymnastic robot. Although it has been
shown that PDFC is effective in the control of the
giant swing motions, it has a deficiency that needs
to predict the movement state of future one period.
Therefore, it is necessary to try some other modified
methods based on DFC to improve the effectiveness
of controlling the giant swing motions. In the fur-
ther research, a method named as extended dynamic
delayed feedback control (EDDFC), which is an exten-
sion of the original dynamic DFC [28] designed for
a discrete-time system, proposed to control the giant
swing motion of an underactuated 3-link gymnastic
robot.

This paper is organized as follows: Section 2 gives
briefly the mathematical model of the 3-link gymnas-
tic robot. Section 3 demonstrates the complex dynam-
ics relevant to periodic and chaotic motions of the free
giant swing motions of the gymnastic robot with dif-
ferent initial conditions. Section 4 discusses in detail a
strategy for stabilizing the periodic motions embed-
ded in a continuous-time system, such as a 3-link
gymnastic robot by the EDDFC method. In Sect. 5,
some numerical simulations show the effectiveness
of the proposed method. Section 6 summarizes the
paper.
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Fig. 1 3-DOF gymnastic robot model

2 Model of a 3-link gymnastic robot

The 3-link gymnastic robot is a simplified model of a
human gymnast on a high bar, where the underactuated
first joint models the gymnast’s hands on the bar, the
rest two actuated joints model, respectively, the gym-
nast’s shoulders (joint 2) and hips (joint 3). As shown
in Fig. 1, for the i th (i = 1, 2, 3) link, mi is its mass, li
is its length, ai is the distance from joint i to its center
of mass, Ii is the inertia moment around its center of
mass, and g denotes the acceleration of gravity.

The equation of motion of the gymnastic robot can
be described as the following equation [40].
⎡
⎣

u1

u2

u3

⎤
⎦ =

⎡
⎣

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎦

⎡
⎣

q̈1

q̈2

q̈3

⎤
⎦

+
⎡
⎣

C1

C2

C3

⎤
⎦ +

⎡
⎣

G1

G2

G3

⎤
⎦ (1)

Here, q = (q1, q2, q3)
T ∈ �3 is the generalized coordi-

nate vector, (u1, u2, u3)
T ∈ �3 is the joint torque vec-

tor, and Mi, j , Ci , Gi (i = 1, 2, 3; j = 1, 2, 3) denote
the items of the inertia matrix, Coriolis matrix, gravi-
tational matrix, respectively.

In addition, since the first joint cannot generate
active torque, the following constraint must be satis-
fied.

u1 ≡ h(q̈, q̇, q) = 0 (2)

In order to facilitate the analysis, Eq. (1) is rewritten
into the following equation.
[

q̇
q̈

]
=

[
q̇

−M−1(q)(C(q, q̇) + G(q)

]

+
[

0
M−1(q)E

] [
u2

u3

]
, (3)

where

M(q) = [M1(q), M2(q), M3(q)]T ,

M1(q) = [r1+r2+r3+2(s1 + s2) cos q2 + 2s3 cos q3

+ 2s4 cos (q2+q3), r2+r3+(s1 + s2) cos q2

+ 2s3 cos q3+s4 cos (q2+q3), r3+s3 cos q3

+s4 cos (q2 + q3)],
M2(q) = [r2 + r3 + (s1 + s2) cos q2 + 2s3 cos q3

+ s4 cos (q2 + q3), r2 + r3 + 2s3 cos q3, r3

+s3 cos q3],
M3(q) = [r3 + s3 cos q3 + s4 cos (q2 + q3), r3

+s3 cos q3, r3],
and

C(x) = [C1(q, q̇), C2(q, q̇), C3(q, q̇)]T ,

C1(q, q̇) = − (2q̇1q̇2 + q̇2
2 )(s1 + s2) sin q2 − (2q̇1q̇3

+ 2q̇2q̇3 + q̇2
3 )s3 sin q3 − (q̇2

2 + q̇2
3

+ 2q̇1q̇2+2q̇2q̇3 + 2q̇1q̇3)s4 sin (q2+q3),

C2(q, q̇) = q̇2
1 {(s1 + s2) sin q2 + s4 sin (q2 + q3)}

− (2q̇1q̇3 + 2q̇2q̇3 + q̇2
3 )s3 sin q3,

C3(q, q̇) = q̇2
1 {s4 sin (q2 + q3) + s3 sin q3}

+ (2q̇1q̇2 + q̇2
2 )s3 sin q3,

and

G(q) = [G1(q), G2(q), G3(q)]T ,

G1(q) = g1 sin q1 + g2 sin(q1 + q2)

+ g3 sin(q1 + q2 + q3),

G2(q) = g2 sin(q1 + q2) + g3 sin(q1 + q2 + q3),

G3(q) = g3 sin(q1 + q2 + q3),

and

E =
⎡
⎣

0 0
1 0
0 1

⎤
⎦ .

The variables among the above equation is defined as
follows:

r1 = I1 + m1a2
1 + m2l2

1 + m3l2
1 ,
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r2 = I2 + m2a2
2 + m3l2

2 ,

r3 = I3 + m3a2
3 ,

s1 = m2l1a2,

s2 = m3l1l2,

s3 = m3l2a3,

s4 = m3l1a3,

g1 = g {m1a1 + (m2 + m3)l1} ,

g2 = g(m2a2 + m3l2),

g3 = gm3a3.

3 Dynamics of a 3-link gymnastic robot

The differential equation (1) cannot be analytically
integrated, except for a special case of link parame-
ters, since it contains the so-called nonholonomic con-
straints. The past researches have shown that this kind
of system displays a chaotic motion if no control input.

In the gymnastic robot model (3), the conditions of
a periodic giant swing motion can be represented as
boundary conditions of one revolution movement as
follows:

q1(0) = −π, q1(T ) = π, q̇1(0) = q̇1(T ),

q2(0) = q2(T ) = 0, q̇2(0) = q̇2(T ),

q3(0) = q3(T ) = 0, q̇3(0) = q̇3(T ), (4)

where T is the period of movement.
Thus, the initial value problem of the giant swing

motion becomes a boundary value problem. Based on
the above-mentioned boundary conditions, an initial
condition from which can achieve a free giant swing
motion, could be obtained by means of the shooting
method. In solving the differential equations (3), 4th-
order Runge–Kutta method was used with time step
dt = 1 ms. See Table 1 for the parameters of the
model. The parameters mi , li , ai are the morpholog-
ical data provided based on an assumed men with 1.7m

Table 1 Link parameter values

1st link 2nd link 3rd link

Mass mi (kg) 6.06 33.4 20.7

Moment of inertia Ii (kgm2] 0.193 1.80 1.56

Link length li (m) 0.593 0.602 0.879

Offset of mass center ai (m) 0.299 0.245 0.377

height, 60Kg weight, and Ii is calculated on the basis
of assumptions that its head and hands are each a solid
sphere of constant density, the other segments are each
a constant density straight bar [42,43]. In addition, take
g = 9.81[m/s2].

As a classical tool for diagnosing whether or not
a system is chaotic, Lyapunov exponents, which pro-
vide a qualitative and quantitative characterization for
dynamical behavior, are related to the exponentially
fast divergence or convergence of nearby orbits in phase
space. A system with one or more positive Lyapunov
exponents is usually taken as an indication that the sys-
tem is chaotic. Therefore, Lyapunov exponent was cal-
culated as follows: for the gymnastic robot system (3),
using the algorithm given in the reference [44].

{λ1, λ2, λ3, λ4, λ5, λ6} = {0.0015445, 0.0016542,

0.0011756,−0.00080229,−0.0017139,−0.0018667}
Since that λ2, being the largest Lyapunov exponent, is
greater than zero, it can be said that the system (3) is
chaotic.

In order to conform the detail of the dynamics of the
3-link gymnastic robot, it is enumerated several types
of steady states at different initial conditions. Figure 2
depicts the phase portraits which show the dynamics
of the system starting from different initial conditions,
in which Fig.2a and c shows the dynamics of the sys-
tem with the initial conditions obtained by the shooting
method, while Fig. 2b and d displays that of the system
with the initial conditions containing errors. Here, qi

and q̇i refer to, respectively, the angle, angular veloc-
ity of the i th (i = 1, 2, 3) link of the gymnastic robot.
From Fig. 2, it can be observed that the free giant swing
motion of the gymnastic robot is sensitive to initial con-
ditions and displays a chaotic behavior.

4 Dynamic delayed feedback control

4.1 Original dynamic delayed feedback control

In the original dynamic delayed feedback control [28],
an nth-order nonlinear discrete-time system described
by Eq. (5) is considered.

x(k + 1) = f (x, u(k)) (5)

where x ∈ �n is the state and u(k) ∈ �n is the
input. For simplicity, it is considered the stabilization
of an unstable fixed point of the system (5). If define
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Fig. 2 Phase portraits (q, q̇) of several types of steady states
with different initial conditions: a (−π, 0, 0, 7.483,−0.278,

4.383), b (−π, 0.1, 0.2, 6.683, 0.222, 3.183), c (−π, 0, 0,

0.763, 18.886,−17.648), d (−π, 0.05, 0.05, 0.863, 19.292,

−18.25); qi and q̇i refer to, respectively, the angle, angular
velocity of the i th (i = 1, 2, 3) link
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x f = f (x f , 0), where x f is a fixed point of the system
(5) with u(k) = 0, then, the linearized system around
x f is obtained as follows:

x(k + 1) = Ax(k) + Bu(k). (6)

Here,

A = ∂

∂x
f (x f , 0) ∈ �n×n, B = ∂

∂u
f (x f , 0) ∈ �n×m .

The original DDFC, which is an n̂th-order linear
dynamic controller, proposed by Yamamoto et al. is
given by

x̂(k + 1) = Âx̂(k) + B̂ y(k),

u(k) = Ĉ x̂(k) + D̂y(k),

y(k) = x(k) − x(k − 1),

⎫⎬
⎭ (7)

where Â ∈ �n̂×n̂ , B̂ ∈ �n̂×n , Ĉ ∈ �m×n̂ , D̂ ∈ �m×n ,
and x̂ ∈ �n̂ . In addition, x̂ is the state of the controller.

4.2 Extended dynamic DFC

Due to the dynamic DFC is proposed for the discrete-
time system, it could not be applied directly to the
continuous-time system. Therefore, it needs some fur-
ther processes.

Let x = (q, q̇), the 3-link gymnastic robot model
(3) can be described as follows:

ẋ = f (x,u). (8)

Here, assume f (·) is differentiable.

4.2.1 Discretization of the system

It is well known that the stabilization problem of peri-
odic orbits in continuous-time systems such as the
underactuated 3-link gymnastic robot can be reduced to
the fixed points stabilization problem of discrete-time
systems by using a Poincaré map. Note that the peri-
odic motion in state space has the property of passing
through the same point per cycle. It is considered to
evaluate the stability of the movement by calculating
discretely the error between the current motion and the
target periodic orbit.

Define the solution of equation passing through x(0)

at t = 0 as follows:

x(0) = x0. (9)

Then, the solutions of Eq. (8) starting from the initial
condition x(0) can be described by the following equa-
tion:

x(t) = ϕ(t, x0, u0), (10)

where ϕ(·) is the function of x .
Moreover, the periodic solution satisfies

x(T ) = x(0) = ϕ(T, x0, u0). (11)

A Poincaré map P is defined as follows:

P : Rn → Rn

x0 �→ x1 = ϕ(T (x0), x0, u0)
(12)

Here, T (x0) is the time required to meet again in a
Poincaré map, P , while trajectory starts from the initial
condition, x0.

Define the intersection point of periodic orbit and
Poincaré map be x̄ , which satisfies the following rela-
tionship.

x̄ = P(x̄, ū) = ϕ(T (x̄), x̄, ū) (13)

The variation equations around the intersection points,
x̄ , can be described as follows:

x(k) = x̄ + x(k),

u(k) = ū + u(k),

}
(14)

where x(k) means

x(k) = ϕ(T (x(k − 1)), x(k − 1), u(k − 1)).

From Eqs. (13) and (14), the following equation is
derived.

x(k + 1) = x̄ + x(k + 1)

= P(x̄ + x(k), ū + u(k)) (15)

Using the above equation’s Taylor series at x̄ and
neglecting the higher order terms can yield

x(k + 1) = Ax(k) + Bu(k), (16)

where

A = ∂ P

∂ x̄
, B = ∂ P

∂ ū
.

Here, k is the discrete time and x(k) ∈ �n , A ∈ �n×n ,
B ∈ �n×m denote the state error, the error transfer
matrix, and the input matrix in terms with the Poincaré
map, respectively.
Substituting Eq. (10) into Eq. (8), one can obtain

dϕ(t, x0, u0)

dt
= f (ϕ(t, x0, u0), u). (17)
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Next, taking differentiation for Eq. (17) at x0 or u0, the
following equations can be obtained, respectively.

∂

∂x0

(
dϕ

dt
(t, x0, u0)

)
= ∂ f (ϕ(t, x0, u0), u)

∂x0
(18)

∂

∂u0

(
dϕ

dt
(t, x0, u0)

)
= ∂ f (ϕ(t, x0, u0), u)

∂u0
(19)

Changing the differential order of the left-hand side in
the Eqs. (18) and (19) yields the following equations.

d

dt

(
∂ϕ

∂x0
(t, x0, u0)

)
= Fx

∂ϕ

∂x0
(t, x0, u0) (20)

d

dt

(
∂ϕ

∂u0
(t, x0, u0)

)
= Fx

∂ϕ

∂u0
(t, x0, u0) + Fu

∂u

∂u0

(21)

Here, Fx , Fu can be calculated as follows:

Fx = ∂ f

∂x
(ϕ(t, x0, u0), u) ,

Fu = ∂ f

∂u
(ϕ(t, x0, u0), u) . (22)

Moreover, by introducing the variable, τ , which is
called Control Period here, and defining u0 as the con-
trol input to the system during (t0, t0+τ) while x = x0,
the input torque u can be described in Eq. (23).

u = rect(t)u0, (23)

where rect(t) is a rectangular function defined as fol-
lows:

rect(t) =
{

1, if (kT + t0) < t ≤ (kT + t0 + τ)

0 otherwise

Here, k = (0, 1, 2, . . .), and t0 is the time at the
Poincaré section.

From Eqs. (20)–(22), each matrix of A and B can
be calculated by carrying out integrals in numerical
integration to the above fundamental matrix solution
of linear differential equations over the interval, t ∈
[0, T ].

4.2.2 Stability analysis

Since the value of both the matrix A and the matrix
B can be calculated, i.e., the stabilization problem of
the 3-link gymnastic robot can be reduced to that of a
discrete model described in Eq. (16). For investigating
the stabilization of gymnastic robot’s continuous-time
system by dynamic delayed feedback control, it is suf-
ficient to consider the discrete-time model.

Here, a modified dynamic DFC controller to stabi-
lize the system (8) is adopted as follows:

x̂(k + 1) = Âx̂(k) + B̂ y(k),

u(k) = Ĉ x̂(k) + D̂y(k),

y(k) = μ(x(k) − x(k − 1))

≡ μ(x(k) − x(k − 1)),

⎫⎪⎪⎬
⎪⎪⎭

(24)

where Â ∈ �n̂×n̂ , B̂ ∈ �n̂×n , Ĉ ∈ �m×n̂ , D̂ ∈ �m×n ,
x̂ ∈ �n̂ . Here, x̂ is the state of the controller, x(k)

denotes the state which is the kth intersection point
of unstable periodic orbit and Poincaré map, P . The
control input u(k) is applied to (8) only if ‖y(k)‖ <

ε, otherwise u(k) = 0 and x̂(k) = 0. ε is a given
sufficient small positive number. In addition, by means
of numerical analysis, it was found that the sign of
x(k)− x(k −1) seems to be able to affect the dynamics
of the controlled system. Therefore, a variableμ, whose
value is (1,or,-1), is introduced as a design parameter.

The linearized closed-loop system with the extended
dynamic DFC (24) can be described by

xc(k + 1) = Acxc(k), (25)

where

Ac =
⎡
⎣

A + μB D̂ −μB D̂ BĈ
In 0 0

μB̂ −μB̂ Â

⎤
⎦ ,

xc(k) =
⎡
⎣

x(k)

x(k − 1)

x̂(k)

⎤
⎦ . (26)

Thus, the local stability of the system (16) with the
controller (24) is reduced to that of (25). Here, it is
considered only the case of n̂ = n. Then, a controller
having the coefficient is given as follows:

Â = (In − A)−1 BK ,

B̂ = −(In − A)−1 BK A(In − A)−1,

Ĉ = K ,

D̂ = −K A(In − A)−1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(27)

where K is a gain matrix.
Therefore, a theorem is obtained as follows:

Theorem 1 Assume that (A, B) is stabilizable. Then,
there exists an nth-order dynamic delayed feedback
controller (24),(27) such that the closed-loop system
(25) is asymptotically stable if and only if In − μA
is nonsingular and A + BK (In − μA)(In − A)−1 is
asymptotically stable.
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Proof Introducing a matrix as follows:

Q =
⎡
⎣

In 0 0
0 In 0

(In − A)−1 −A(In − A)−1 −In

⎤
⎦ , (28)

it is obvious that

Q = Q−1.

Then, using a similarity transformation of Ac by the
matrix Q, it obtained the Eq. (29).

(29)

To simplify the analysis, it is desired that each item
of the third row of the matrix Ãc in Eq. (29) equals zero
as Eqs. (30)–(32) :

(In − A)−1(A + μB D̂) − A(In − A)−1 − μB̂

+ (In − A)−1 BĈ(In − A)−1 − Â(In − A)−1 = 0,

(30)

−(In − A)−1μB D̂ − (In − A)−1 BĈ A(In − A)−1

+μB̂ + ÂA(In − A)−1 = 0, (31)

−(In − A)−1 BĈ + Â = 0. (32)

Note equality holds in the following equation.

(In − A)−1 A = A(In − A)−1 (33)

From Eqs. (32) and (33), one can simplify Eqs. (30)
and (31) to be a same equality as follows:

(In − A)−1μB D̂ − μB̂ = 0. (34)

With reference to the item in the first row and the second
column of the matrix Ãc, D̂ can be chosen as follows:

D̂ = −Ĉ A(In − A)−1. (35)

Consider each matrix of Â,B̂,D̂ as a matrix function
of the matrix Ĉ . Then, a solution of Eqs. (30)–(32) is
obtained as follows:

Â = (In − A)−1 BĈ,

B̂ = −(In − A)−1 BĈ A(In − A)−1,

D̂ = −Ĉ A(In − A)−1.

⎫⎪⎬
⎪⎭

(36)

If let Ĉ = K , it is obvious that Eq. (36) is equivalent
to Eq. (27). Thus, Eq. (29) is reduced to be

Q−1 Ac Q =
⎡
⎣

A + BK (In − μA)(In − A)−1 (∗) −BK
In 0 0
0 0 0

⎤
⎦ ,

which is stable if and only if A + BK (In − μA)(In −
A)−1 is asymptotically stable. 
�

Furthermore, if let K̂ = K (In − μA)(In − A)−1,
the stabilization problem of the closed-loop system
becomes a problem as follows:

Problem 1 Given a system (25), find a feedback gain
K̂ that places the closed-loop poles of the system in the
set � = {z ∈ C : |z| < 1} .

As is well known, K̂ is a solution of Problem 1 if
and only if the matrix A + BK̂ has its eigenvalues in
the above set of �. Hence, it is not difficult to obtain
the value of K̂ by using the pole placement technique.
If det(In −μA) ·det(In − A)−1 �= 0, then the feedback
gain K is given by

K = K̂ (In − A)(In − μA)−1. (37)
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Table 2 Control parameters (GRM-I)

Case Initial condition Pole of the linearized closed-loop system μ ε

I (−π, 0.1, 0.2, 6.683, 0.222, 3.183) (0.88+0.1i, 0.88−0.1i, 0.89+0.1i, 0.89−0.1i, 0.9+0.1i, 0.9−0.1i) 1 2

II (−π, 0.05, 0.05, 0.863, 19.292,−18.25) (0.2+0.05i, 0.2−0.05i, 0.25+0.05i, 0.25−0.05i, 0.3+0.05i, 0.3−0.05i) −1 5
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Fig. 3 Stabilizing case-I orbits: a phase portrait with t = 0–80 s; b phase portrait with t = 80–100 s; c time history of control input
u2; d time history of control input u3. (GRM-I)
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Fig. 4 Stabilizing case-II orbits: a phase portrait with t = 0–140 s; b phase portrait with t = 140–160 s; c time history of control input
u2; d time history of control input u3. (GRM-I)

5 Numerical simulations

This section presents some simulation results to ver-
ify the validity of the proposed method for controlling
the giant swing motions of the gymnastic robot. Two
gymnastic robot with different model parameters are
examined by means of the proposed method. In solv-
ing the differential equations, 4th-order Runge–Kutta

method was used with time step size dt = 1 ms. The
control period τ is set to 5 ms.

5.1 Gymnastic robot model I (GRM-I)

In this subsection, the parameters of the gymnastic
robot model are used as shown in Table 1. Here, two
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Fig. 6 Angle, Angular velocity and Stick diagram while the system succeed to form a stable giant swing motion in case-II. (GRM-I)

cases shown in Table 2, in which the system starts its
movement from different initial conditions, were stud-
ied below. From Fig. 2b and d, it has been known that
the dynamics of the system was chaotic without the
control input u.

Using the method discussed in Sect. 4.2.1, the error
transfer matrix A and the input matrix B of these two
cases can be computed, respectively, in which two
unstable fixed points of the system used as the initial
conditions were set as the following cases:{

I : (−π, 0, 0, 7.483,−0.278, 4.383)

II : (−π, 0, 0, 0.763, 18.886,−17.648)
(38)

Then, by assigning, respectively, the poles of A +
BK (In − μA)(In − A)−1 in the unit disk, as shown
in Table 2, the gain matrix K can be obtained. From
Eq. (27), each Â, B̂, Ĉ, D̂ could be calculated using
the obtained values of A, B, and K . Thus, an extended

Table 3 Link parameter values [45]

1st link 2nd link 3rd link

Mass mi (kg) 5.4 29.5 18.5

Moment of inertia Ii (kgm2) 0.15 1.93 1.03

Link length li (m) 0.58 0.50 0.79

Offset of mass center ai (m) 0.31 0.20 0.33

dynamic delayed feedback controller could be designed
to control the dynamics of the system.

The numerical simulation results are shown in Figs.
3 and 4, in which Fig. 3 shows the results of case-I,
while Fig. 4 displays that of case-II. Meanwhile, Figs.
3a, b, and 4a, 4b plot the trajectory of the orbits in
the phase plane (q, q̇), which refer to, respectively, the
angle, angular velocity of the link. The time histories
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Table 4 Control parameters (GRM-II)

Initial condition Pole of the linearized closed-loop system μ ε

(−π, 0.1, 0.1, 4.225, 9.30,−6.29) (0.81+0.1i, 0.81−0.1i, 0.83+0.1i, 0.83−0.1i, 0.85+0.1i, 0.85−0.1i) 1 1.5
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Fig. 7 Stabilizing orbits: a phase portrait with t = 0–100 s; b phase portrait with t = 100–120 s; c time history of control input u2; d
time history of control input u3. (GRM-II)

of control input were depicted in Figs. 3c, 3d, and 4c,
d, respectively.

In addition, Figs. 5 and 6 depict, respectively, the
angle, angular velocity, and stick diagrams based on

one period data after the giant swing motion converging
to a stable periodic orbit. In the above two cases, each
one of the intersection point of the periodic orbit and
the Poincaré map converges to a fixed point as follows:
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{
I : (−π,−0.001, −0.005, 6.767, −0.410, 4.455)

II : (−π, −0.020, −0.004, 0.818, 19.375, −18.292)
(39)

Compare Eq. (38) with Eq. (39), one will find a lit-
tle difference between them. This difference is thought
to be caused by the error between the continuous-time
system of the 3-link gymnastic robot and its discretiza-
tion model. Nevertheless, for a gymnastic robot system,
periodicity is more important relative to the exact fixed
point.

It can be known from these simulation results that
the controlled system succeeded to form two kinds of
giant swing motions from the suspended posture by
using the dynamic delayed feedback control method.

5.2 Gymnastic robot model II (GRM-II)

To confirm whether the proposed method is effective
while being applied to a gymnastic robot with differ-
ent parameters, in this subsection, an examination was
conducted to a different gymnastic robot model whose
parameters shown in Table 3 are the same as those pre-
sented in the reference [45].

Similar to Sect. 5.1, the error transfer matrix A and
the input matrix B can be computed, in which an unsta-
ble fixed point of the system used as the initial condi-
tions was set to be (−π, 0, 0, 4.525, 8.846,−6.791).
Then, by assigning the poles of A + BK (In − μA)

(In − A)−1 in the unit disk, as shown in Table 4,
the gain matrix K can be obtained. From Eq. (27),
each Â, B̂, Ĉ, D̂ could be calculated similarly using

the obtained values of A, B, and K . Thus, an extended
dynamic delayed feedback controller could be designed.

The numerical simulation results are shown in Figs.
7 and 8, in which Fig. 7 plots the trajectory of the orbits
in the phase plane (q, q̇), which refer to respectively
the angle, angular velocity of the link, and the time
history of control input, Fig. 8 depicts the angle, angu-
lar velocity, and stick diagrams based on one period
data after the giant swing motion converging to a sta-
ble periodic orbit. The intersection point of the periodic
orbit and the Poincaré map converges to a fixed point
as (−π,−0.003,−0.002, 4.530, 8.811,−6.827).

From the above simulation results, it can be seen
that the proposed method is also effective in controlling
a gymnastic robot with different model parameters to
perform a stable periodic giant swing motion.

6 Conclusion

This paper studied the behavior of the giant swing
motions of a 3-link gymnastic robot by means of the
dynamic delayed feedback control. Firstly, a mode of
a 3-link gymnastic robot was given and its periodic
and chaotic motions were presented by numerical sim-
ulations. Secondly, a method of the extended dynamic
delayed feedback control, which is an extension of the
original dynamic DFC, was proposed. Meanwhile, a
discretization way to calculate the error transfer matrix
and the input matrix was discussed. Finally, the simu-
lation results showed its effectiveness via the proposed
method.
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